Finding the known and unknown, plant waterborne virus in Oklahoma water

Jon Daniels, Suat Kaimak, Francisco Ochoa Corona

Oklahoma State University

National Institute for Microbial Forensics & Food and Agricultural Biosecurity

Dept. of Entomology & Plant Pathology

The predicament...

U.S. imports ~ 40 million tons of agricultural products

Only 2% inspected: > 39 million tons uninspected

Plus: Tourism, immigration, weather

photo: ArtToday.com

The result

Plum Pox Virus

Citrus Leprosis

Soybean Rust

Citrus

Canna Yellow Mosaic Virus

Brown spot

Lethal Yellowing of Palm

Southern Wilt

Challenges in plant pathogen diagnostics

- Multiple types of plant pathogens
 - Viral
 - Bacterial
 - Fungal
 - Phytoplasma
 - Nematodes

- Non-pathogenic microbes living in the enviroment
 - Who are the good guys and who are the bad guys?

Oklahoma water

- Over 200 lakes
- Over 1 million surface acres of water
- Numerous rivers, streams & ponds
 - Boating & swimming

- What do we mean by waterborne pathogens?
 - A organism virus capable of causing disease that can be transmitted via water
- Potexviruses
- Tobamovirus
- Tombusviridae

- What do we mean by waterborne pathogens?
 - A organism virus capable of causing disease that can be transmitted via water
- Potexviruses
 - \sim
- Tobamovirus
- Tombusviridae

- What do we mean by waterborne pathogens?
 - A organism virus capable of causing disease that can be transmitted via water
- Potexviruses
- Tobamovirus
- Tombusviridae

- What do we mean by waterborne pathogens?
 - A organism virus capable of causing disease that can be transmitted via water
- Potexviruses
- Tobamovirus
- Tombusviridae

Current plant pathogen detection technologies

- Protein based immunological assays
 - Immunostrip test
 - ELISA

Posit	ive	
	Рлут Ожи	00005
SAMPLE	Phyt	00005
Negal	live	

Current plant pathogen detection technologies

- Nucleic acid based assays
 - Polymerase chain reaction (PCR)
 - qPCR
 - Multiplex PCR

Current plant pathogen detection technologies

Protein based immunological assays

- Immunostrip test
- ELISA

Nucleic acid based assays

- Polymerase chain reaction (PCR)
- qPCR
- Multiplex PCR
- Can only detect a few pathogens at a time
- Prior characterization of the pathogen is required for all

Next generation sequencing technology

• 454 Pyrosequencing

Next generation sequencing technology

- 454 Junior Pyrosequencing Power
 - Generates 35 million bases (Roche)
 - OSU Core facility over <u>61million bases</u>
 - Read length ~400 bp
 - 100,000 shotgun reads
- Roche 454
- SOLiD
- Illumina
- Ion Torrent

Why use next generation sequencing?

- We get an enormous amount of data
- What to do with all that sequence data?
- We do not need all of the data
- Eliminate all irrelevant sequence data and reduce the bioinformatic load

Justifications

- One-sixth of the GDP = \$1 trillion annually
- 1 in every 8 individuals is employed by the total agricultural industry
- \$50 billion in exports annually
- Single largest positive contributor to the U.S. economy
- In Oklahoma, ~\$1 billion annually (2005)
- NGS allows the possibility of simultaneously <u>detecting</u> and <u>identifying</u> unknown waterborne plant pathogens

Purpose

This study addresses the current need for detecting water borne viruses, in a single assay by combining metagenomics, NGS and bioinformatics. Our goal is to develop simple methods to facilitate the role of first detectors and managers monitoring water resources.

How can we detect waterborne viruses?

 Use tools/methods that combine bioinformatics with plant pathology

Mock Sample Database Generation

Develop a Mock Sample Database for BLAST

Electronic probe (e-probe) design

The pipeline for e-probe generation by using parts of Tools for Oligo Fingerprint Identification (TOFI).

E-probe design

Developed a pipeline for query generation by using parts of Tools for Oligo Fingerprint Identification (TOFI).

Target virus			
Neighbor			

E-probe design Developed a pipeline for query generation by using parts of Tools for Oligo Fingerprint Identification (TOFI).

Target virus Neighbor

In silico results from a 100-year agricultural field metagenomic database

NGS Simulator MetaSim	Total # of viral genomes	Avg. individual virus load	Total viral load	Total matches	Pathogenic virus present yes/no
NGS simulator (non-spiked)	unknown	unknown	unknown		Yes
NGS simulator (spiked)	27	0.14%	3.76%	343	Yes

E-probes used:

- o Potexviruses
- Tobamovirus
- o Tombusviridae
- Odontoglossum ringspot virus (ORSV) o ssRNA
 - Plant pathogenic virus affecting orchids

Experiment Collection sites

Experiment: Basic procedures

Experiment Gel electrophoresis: *Tombusvirus*?

Experiment Gel electrophoresis: *Potexvirus*?

Sequencing the bands

>Tombusvirus

>Potexvirus

 GGGGCACCCGACTATCGAGATCGGATGACTTGTCGACCCACCGAGTCGACACGGCTGACTCGCCC GGCAGCCGGAAAGCCAACGGTGGCTTGCTGCCACCTGCCAGCTGATGCAGCTGGGTTTCTAGCCC ACGAGTCGTTTTATCGATCGAACCAAGCGCCGGCCGAACCAGTGCCTTCCAATCCGACTCGACCTT CTCCTTCTGAGCTCGCAGAGATGCGATTTCCGTCCGCTTGGGGTCCTTTTCCAGCGAAGCAATTCGC TTTCGGGAGTTCTGATAATCCTGGATGTCCTTCGACCACTGAGCGTAGATCGAATCGATTTGGTCGAT CGCCTTATTGGCCAGCTTGTCGGCTTCCTGCTTGTTCTCGAATCCATAGTAGGTCGAGGCCTGCGCG ACATAGTCGCCGATGACCTGAGCCATCTTGTCGCGGTCTAAGCGGATCGTCCCATCCTGGTCCGGG ATCAACGCCTGGAACTGCCCCGCCAGCGGCCCTTTGGCAGCCTGCAGAAAGCCAATCGAGGAAAA CTTGCCGTCCCGAACCTTCGACCCAA

BLAST the sequences

• >Tombusvirus

2	BLAST [®] Basic Local Alignment Search Tool				
~	Home Recent	Results Saved Strateg	ies Help		
۶I	ICBI/ BLAST/ blastn sui	ite/ Formatting Results - PM6	VNNCK01R		
	Edit and Resubmit	Save Search Strategies	▶ Formatting options	▶ <u>Download</u>	
	Nucleotide Seq	uence (525 letters)			
	Query ID Description Molecule type Query Length	lcl 48563 None nucleic acid 525		Database Name Description Program	nr Nucleotide collection (nt) BLASTN 2.2.28+ > <u>Citation</u>
	O No significant	similarity found. For rea	sons why, <u>click here</u>		
	other reports.	e <u>search summary</u>			

BLAST the sequences

>Potexvirus

BLAST®			Basic Local	Basic Local Alignment Search Tool		
2	Home Rec	ent Results Saved Strate	gies Help			
P N	ICBI/ BLAST/ blastn	suite/ Formatting Results - PM	739WSJ014			
	Edit and Resub	mit <u>Save Search Strategies</u>	▶ Formatting options	▶ <u>Download</u>		
Nucleotide Sequence (555 letters)						
	Query Descripti Molecule ty Query Leng	ID ldl 27431 ion None rpe nucleic acid gth 555		Database Name Description Program	nr Nucleotide collection (nt) BLASTN 2.2.28+ <u>Citation</u>	
	0 No significa	ant similarity found. For re	asons why, <u>click here</u>			
	Other report	s: ▶ <u>Search Summary</u>				

Using e-probes to <u>BLAST</u> the sequences

Both are plant pathogens!

Using e-probes to BLAST the sequences

Validation

Validation

Conclusion

- Using bioinformatic tools in combination with molecular tools enables to detect waterborne viruses.
- Positive detection is possible from 100 ml samples.
- Because of the volume, dilution and putative water dynamics of water as virus pathway,

finding known and unknown plant pathogenic viruses is a very difficult specially for unknowns.

• The proposed database of waterborne viruses is dynamic and can be updated periodically.

Acknowledgements

Massively Parallel Sequencing (MPS) as a diagnostic and forensic analysis tool for plant pathogens

AFRI Plant Biosecurity Program 2009-2013

Division of Agricultural Sciences and Natural Resources

Gelebrating 50 Years

Funding Industry Solutions Through Research and Education

National Institute for Microbial Forensics & Food and Agricultural Biosecurity

Vice President for Research and Technology Transfer

Please feel free to contact anytime!

Webpage: http://entoplp.okstate.edu/profiles/ochoacorona.html

Dr. Francisco Ochoa Corona: ochoaco@okstate.edu

Jon Daniels: jon.daniels@okstate.edu